
18/9/2007 I2A 98 slides 4 1 Richard Bornat
Dept of Computer Science

A closer look at big-O notation.

We all know that in a formula y ax b= + the values of
both a (slope) and b (intercept) are important.

If y is the cost of executing a program on a problem of
size x, then

• b determines the value at x = 0 – the
fixed cost of execution;

• a determines how fast the cost grows as
the problem size increases.

a is the constant of proportionality of a linear-cost
program.

18/9/2007 I2A 98 slides 4 2 Richard Bornat
Dept of Computer Science

It’s obviously untrue that all linear-cost programs
have the same execution time:

0

100

200

300

400

500

600

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

2x+180 5x+25

The 2x cost grows more slowly, so the corresponding
program is to be preferred on ‘sufficiently large’
problems.

But all the problems we ever consider may be smaller
than 50, so the 5x program might be better for us.

18/9/2007 I2A 98 slides 4 3 Richard Bornat
Dept of Computer Science

You should already be persuaded that whatever the
constants of proportionality, x2 formulæ will overtake
x formulæ at sufficiently large values of x:

0

2000000

4000000

6000000

8000000

10000000

12000000

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

100x+1000000 0.1x^2+20

No matter what the disparity in fixed costs (20 vs 1
million), no matter what the cost of the inner loop
(0.1 vs 100), the quadratic program will cost more
than the linear program on sufficiently large
problems.

And the same is true for all the other powers: O N k() is worse
than O N j() on sufficiently large problems whenever k j> no
matter what the fixed costs or the constants of proportionality.

18/9/2007 I2A 98 slides 4 4 Richard Bornat
Dept of Computer Science

It doesn’t matter if a quadratic program has a large
linear component. Eventually it will grow just like x2.

At small scales it might look linear:

0.1x^2+100x+10000

9400

9600

9800

10000

10200

10400

10600

10800

11000

11200

0 1 2 3 4 5 6 7 8 9 10

18/9/2007 I2A 98 slides 4 5 Richard Bornat
Dept of Computer Science

Over a larger scale it looks simply quadratic:

0.1x^2+100x+10000

0

2000000

4000000

6000000

8000000

10000000

12000000
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

The higher power eventually dominates the lower, no
matter what the constants of proportionality.

18/9/2007 I2A 98 slides 4 6 Richard Bornat
Dept of Computer Science

So if the cost of executing a program on a problem of
size N is given by a polynomial formula
a a N a N a Nn

k
0 1 2

2+ + + +... where an ! 0, we say it is
O N k(), neglecting smaller powers of N (because on
large problems N k will dominate).

And then we say that O N k() is to be preferred to
O N j() whenever k j> neglecting the constants
a a an0 1, ,..., (because on large problems N k will
dominate N j).

This notation is a convenient approximation.

• It shouldn’t tempt us to neglect the
constants of proportionality when
comparing two O N k() algorithms.

• We should be aware that O N k() may be
worse than O N j() on small problems,
even though k j> .

• Experiment rules.
No interesting algorithm is O N k() where k < 0 . I hope you
can justify this assertion.

18/9/2007 I2A 98 slides 4 7 Richard Bornat
Dept of Computer Science

One last wrinkle.

We sometimes write algorithms which are mixed,
because of different constants of proportionality.

For example, an algorithm which is O N 2() for small
values of N, and O N Nlg() for larger values – because
the N 2 algorithm is quick and easy to set up on small
problems, perhaps.

Such an algorithm, in the limit, is O N Nlg().

Hence the definitions on p121 of Weiss. Big-O
notation gives upper bounds on execution costs.

He also gives definitions of " ...() (big-Omega, a notation for
lower bounds), # ...() (big-Theta, upper and lower bounds) and
o ...() (little-o, upper bound only).

In this course we are mostly concerned with worst-
case calculations, and with finding an upper

bound on the worst case of a program’s execution.

18/9/2007 I2A 98 slides 4 8 Richard Bornat
Dept of Computer Science

On logarithms: log, ln and lg.

In various examples, as we shall see, we prefer
O Nlg() to O N(), because lg N grows more slowly
than N.

When N > 0 and b Nx = , we say that logb N x= .

Here b is the base, and x is the logarithm.

logb N is the power to which you must raise b to
get N.

A logarithm is rarely a whole number ...

18/9/2007 I2A 98 slides 4 9 Richard Bornat
Dept of Computer Science

Fact 0. b Nb Nlog = .

That’s the definition of a logarithm!

Fact 1. If N J K= × , then log log logb b bN J K= + .

b b bx y x y+ = × , so b b b J K Nb b b bJ K J Klog log log log+ = × = × = .

This is why logarithms were popular in my schooldays: they
convert multiplication problems into addition problems.

Fact 2. If logb N x= , then logb N x2 2() = .

b b b N N Nx x x2 2= × = × =

Fact 2a. In general, log logb
y

bN y N() = .

Another reason for the popularity of logarithms: they convert
exponentiation problems into multiplication problems.

18/9/2007 I2A 98 slides 4 10 Richard Bornat
Dept of Computer Science

Fact 3. log logb cN k N= , where k is a constant.

N c c N= log , by definition.
log log log

b b
NN c c= (), taking logb of both sides.

log log loglog
b

cN
c bc N c() = × , by fact 2a.

logb c is a constant, because c is a constant.
So log logb cN k N= , where k is a constant.

So the base doesn’t matter in big-O calculations.

Therefore O Nblog() programs run just like
O Nclog() programs, neglecting constants of

proportionality.

18/9/2007 I2A 98 slides 4 11 Richard Bornat
Dept of Computer Science

Computer scientists are especially
interested in base 2.

For all sorts of reasons:

• lg N is the number of bits in the binary
numeral representation of N;

therefore lg N is the number of bits needed to represent
all the numbers 0..N in binary numeral notation;

• lg N is the number of times you must double
(starting from 1) before you reach or exceed
N;

• lg N is the number of times you must halve
(starting from N) before you reach 0.

The last point is the crucial one in this course: we
shall consider algorithms which work by repeated
halving, stopping when they reach a problem of size
0 (in lg N steps) or 1 (in lg N $1 steps).

For these reasons we use a special notation for base-2
logarithms.

18/9/2007 I2A 98 slides 4 12 Richard Bornat
Dept of Computer Science

Calculating execution costs.
Mostly addition and multiplication.

All costs assessed on the kind of machine we are using as a
model: sequential, no significant parallel executions.

0. The cost of arithmetic, comparison and storage
operations is constant in time and zero in space.

Some arithmetic or comparison operations might take longer
than others, because of the size of the data. This does not
contradict point 0.

T1. The execution time of (time taken to evaluate)
the formula f1 op f2 is T T Tf1 f2 op+ + , where Top
is some small constant depending on the
operator op and the types of the formulæ f1 and
f2.

What goes for binary operators goes similarly for all the other
kinds of operators - but see below for choice instructions and
choice formulæ.

T2. If the execution time of I1 is T1 , and the
execution time of I2 is T2, then the execution
time of I I1 2; is T T1 2+ .

18/9/2007 I2A 98 slides 4 13 Richard Bornat
Dept of Computer Science

T3. The execution time of the instruction
for (INIT; COND; INC) BOD is
 T T T T T T T TINIT COND BOD(v0) INC COND BOD(vN) INC COND+ + + +() + + + +()... ,
where v v vN0 1, ,..., are the successive values set
up by INIT and INC to control the execution of
BOD.

It follows that if TBOD is independent of the values vi , and if

 TCOND, TINC and TBOD are all O f N()() execution time and TINIT is
O f N()() or better, then the for is O N f N× ()() execution time.

while instructions can be treated as a special kind of for,
without INIT or INC.

I think I can neglect the cost of jumps.

T4. The execution time of the instruction
if (COND) THEN else ELSE is either T TCOND THEN+
(if COND is non-zero) or T TCOND ELSE+ (otherwise).

The same goes for choice formulæ COND ? THEN : ELSE.

Single-armed choice instructions if (COND) THEN can be
treated as if (COND) THEN else {}

I neglect the cost of jumps.

T5. The execution time of the block
{ decls instrs } is T Tdecls instrs+ .

18/9/2007 I2A 98 slides 4 14 Richard Bornat
Dept of Computer Science

T6. The execution time of the variable declaration
type x is a small constant Tvaralloc; the
execution time of the initialised declaration
type x = val is T Tvaralloc val+ .

Variable allocation is pretty cheap, but initialisations can be
as costly as you like.

Variable declared in for instructions are allocated by the
smallest enclosing block, but the initialisation takes place
when the for is executed.

T7. The execution time of the method declaration
type f(params) is zero.

Declaration is cheap, but execution may be expensive.

T8. The execution time of the method (function /
procedure) call f(args) is a small constant Tcall
plus the time to evaluate the arguments args and
the time to execute the method body.

T9. The execution time of the formula
new class(args) is difficult to determine. It
includes at least the time to evaluate the
arguments args and to execute the class body,
considered as a block.

18/9/2007 I2A 98 slides 4 15 Richard Bornat
Dept of Computer Science

The difficulty arises because this formula requires use of a
garbage collector.

S1. If the space used by I1 is S1 , and the space used
by I2 is S2, then the space used by I I1 2; is
S S1 2% .

Space can be reused; time can’t be.

Space can be reclaimed and reused.

Space is allocated in two ways: in variable declarations and in
new formulæ.

S2. The space allocated by the variable declaration
type x is a small constant Svar. The space is
reclaimed when the block which contains the
declaration terminates.

The same goes for variable declarations in for instructions.

S3. The space allocated by the method declaration
type f(params) is a small constant Smethod. The
space is reclaimed when the block which
contains the declaration terminates.

18/9/2007 I2A 98 slides 4 16 Richard Bornat
Dept of Computer Science

S4. The block which is a method body terminates
when the method returns.

So the variable and method space allocated by that block
execution is reclaimed when the method returns.

S5. The space allocated by a new formula is that
allocated by the declarations in the
corresponding class body. It is reclaimed only
when the garbage collector is good and ready.

We don’t know when the garbage collector will be ready: it
depends on all sorts of difficult considerations.

In effect there are two kinds of space: variable/method (stack)
space and object (heap) space.

18/9/2007 I2A 98 slides 4 17 Richard Bornat
Dept of Computer Science

Some examples.
We try to work inside-out, calculating the properties of the
smallest components first.

1. for (int i=n; i>m; i--) A[i]=A[i-1];

 TINIT, TCOND, TINC and TBOD all O 1() (constant) execution time:
time taken by the for is therefore O m n$() (when m n<) or
O 1() (when n m=).

The for executes just one declaration: space used is therefore
O 1().

18/9/2007 I2A 98 slides 4 18 Richard Bornat
Dept of Computer Science

2. int common = false;
for (int i=0; i<N; i++)
 for (int j=0; j<M; j++)
 if (A[i]==B[j]) common = true;

The if (line 4) consists of a constant-time test and a constant-
time assignment. It’s worst-case constant time, O 1().

The inner for (lines 3-4) has constant-time components, and
executes its body M times. It’s worst-case linear time, O M().

The outer for (lines 2-4) has constant-time INIT, COND and INC,
and its BOD has an execution time independent of i and O M().
So the outer for is O N M×().

The whole is a constant-time declaration followed by an
O N M×()-time for; the whole is O N M×() in execution time.

The if allocates no space: it’s O 0() in space.

The inner for is equivalent to a block which allocates one
variable: it’s O 1() in space.

The outer for allocates one variable and repeatedly executes
the inner for, a block which begins by allocating one variable
and ends by reclaiming it. So the outer for uses two variables:
it’s O 1() in space.

The whole allocates one variable and then executes a for
which is O 1() in space: the whole is O 1() in space

18/9/2007 I2A 98 slides 4 19 Richard Bornat
Dept of Computer Science

3. for (int i=0; i<N; i++) {
 Value min = A[i];
 int minp = i;
 for (int j=i+1; j<N; j++)
 if (A[j]<A[i]) {
 min = A[j]; minp = j;
 }
 A[minp] = A[i]; A[i] = min;
}

The if instruction (lines 5-7) has a constant-time test and a
constant-time sequence of assignments. It’s worst-case O 1() in
execution time.

The inner for (lines 4-7) has constant-time components, and
executes its body N i$ $1 times. It’s worst-case linear in
execution time, O N i$().

Lines 2, 3 and 8 are O 1(), and lines 4-7 are O N i$(), so lines
2-8 are O N i$() in execution time.

The outer for has constant-time INIT, COND and INC, and a BOD
whose execution time depends on N i$. So its execution time
is O O N O N O1 1 0() + () + $() + + ()... , which is a triangular
pattern whose area is proportional to N N× +()1 2, and that
makes it O N 2() in execution time.

18/9/2007 I2A 98 slides 4 20 Richard Bornat
Dept of Computer Science

Space analysis of example 3 is similar to example 2: lines 2-8
allocate three variables and so are O 1() in space.

The whole is equivalent to a block which allocates one
variable and then repeatedly executes a block (lines 2-8). That
block repeatedly allocates and reclaims three variables. So the
whole uses four variables: it’s O 1() in space.

